Dorsal column sensory axons lack TrkC and are not rescued by local neurotrophin-3 infusions following spinal cord contusion in adult rats.

نویسندگان

  • K Adam Baker
  • Shojiro Nakashima
  • Theo Hagg
چکیده

By reducing the progressive degeneration and disconnection of axons following spinal cord injury the functional outcome should improve. After direct transection of dorsal column sensory axons, neurotrophin-3 (NT-3) treatment can reduce degeneration and promote regeneration of the proximal stumps. Here, we tested in adult rats whether NT-3 infusion at the site of a moderate T9 spinal cord contusion would rescue sensory connections to the gracile nucleus in the medulla. Sensory projections were anterogradely traced bilaterally with injections of cholera toxin B (CTB) into the sciatic nerve 3 days before analysis. Seven days after the contusion plus intrathecal (subarachnoid) vehicle infusion as a control, the CTB-positive innervation of the gracile nucleus was reduced to approximately 25% of sham-operated rats. Intrathecal infusion of 10 microg/day of NT-3 did not affect this reduced innervation. To ensure good tissue penetration and high concentrations of NT-3 early after the injury, other rats received intraparenchymal infusions of vehicle or NT-3 near the injury site starting 2 days before until 7 days after the injury. This NT-3 treatment also did not affect the reduced innervation. This suggests that local NT-3 treatments cannot protect sensory axons from secondary degeneration after a contusive spinal cord injury. These results are likely because TrkC is not present in axons of the dorsal columns or gracile nucleus, or in other dorsal column cell types, even after the contusion. Together with published results, our data suggest that NT-3 is a peripherally--but not centrally--derived neurotrophic factor for sensory neurons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Small-molecule protein tyrosine phosphatase inhibition as a neuroprotective treatment after spinal cord injury in adult rats.

Spinal cord injury causes progressive secondary tissue degeneration, leaving many injured people with neurological disabilities. There are no satisfactory neuroprotective treatments. Protein tyrosine phosphatases inactivate neurotrophic factor receptors and downstream intracellular signaling molecules. Thus, we tested whether the peroxovanadium compound potassium bisperoxo(1,10-phenanthroline)o...

متن کامل

Dynamic regulation of the expression of neurotrophin receptors by Runx3.

Sensory neurons in the dorsal root ganglion (DRG) specifically project axons to central and peripheral targets according to their sensory modality. However, the molecular mechanisms that govern sensory neuron differentiation and the axonal projections remain unclear. The Runt-related transcription factors, Runx1 and Runx3, are expressed in DRG neuronal subpopulations, suggesting that they might...

متن کامل

A Chemoattractant Role for NT-3 in Proprioceptive Axon Guidance

Neurotrophin-3 (NT-3) is required for proprioceptive neuron survival. Deletion of the proapoptotic gene Bax in NT-3 knockout mice rescues these neurons and allows for examination of their axon growth in the absence of NT-3 signaling. TrkC-positive peripheral and central axons from dorsal root ganglia follow proper trajectories and arrive in close proximity to their targets but fail to innervate...

متن کامل

Dependence of regenerated sensory axons on continuous neurotrophin-3 delivery.

Previous studies have shown that injured dorsal column sensory axons extend across a spinal cord lesion site if axons are guided by a gradient of neurotrophin-3 (NT-3) rostral to the lesion. Here we examined whether continuous NT-3 delivery is necessary to sustain regenerated axons in the injured spinal cord. Using tetracycline-regulated (tet-off) lentiviral gene delivery, NT-3 expression was t...

متن کامل

Schwann cell p75NTR prevents spontaneous sensory reinnervation of the adult spinal cord.

Schwann cells are attractive candidates for repair of the injured spinal cord. Transplanted Schwann cells are permissive to regeneration, but their ability to promote regeneration into distal spinal cord remains weak despite their production of growth-promoting neurotrophins. Schwann cell activation such as that which accompanies peripheral nerve injury results in massive upregulation of the p7...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Experimental neurology

دوره 205 1  شماره 

صفحات  -

تاریخ انتشار 2007